

6/5/2019

Environmental
Impact Study for
Table to Table
A Food Rescue Organization

Jessica Ayers, Danielle Thomas, Erica Wiener
COMMUNITY CENTERED PROBLEM SOLVING AND DESIGN

1

Table of Contents

Introduction .. 2

Food Waste in Iowa City, Iowa ...2

Methodology ... 4

Project Scope ...4

Data Management ...4

Pre-Retail...5
Assumptions and Uncertainties .. 6
Water Inputs .. 7
GHG Emissions ... 7

Post-Retail ...8
Route-based Calculations .. 8

Results and Discussion ... 10

Pre-Retail... 11
Water Footprint ... 11
GHG Emissions ... 12

Post-Retail ... 13

Conclusion ... 15

References... 16

Appendix A: Python code to match location names .. 17

Appendix B: Python code for analyzing monthly files ... 20

Appendix C: R code for extracting route information .. 27

Appendix D: Python code for distance calculations ... 29

Appendix E: Food Category Scenarios... 32

Appendix F: Water and Carbon Footprint Factors ... 34

2

Introduction

Table to Table’s (T2T) mission is to keep wholesome, edible food from going to waste by

collecting it from donors and then distributing to those in need, which includes agencies that

serve the hungry, homeless and at-risk populations. Their operations consist of food (fresh and

perishable) retrieval and delivery of donated items to recipient agencies all in the same day.

T2T recovers fresh, frozen, and prepared food that is donated from local restaurants, grocery

stores, bakeries, schools, and businesses. The food is delivered to community social service

agencies and low-income housing sites. Since the organization began in April 1966, they have

rescued and redistributed over 18 million pounds of food.

In the last 50 years, it has been challenging to quantify T2T’s impacts of food rescue to

their local communities. T2T needs to have credible, fastidious calculations so they can apply

for grants, market to potential donors, and argue the importance of food rescue in their

neighborhoods. The University of Iowa (UI) team collaborated directly with Nicki Ross and Emily

Meister, the Director and Program Coordinator of T2T, respectively. Through a series of emails

and in-person meetings, T2T guided the goals, decisions, and inclusions of the project. The main

goal of this work is to quantify T2T’s food rescue impact so that they will have evidence of their

specific net environmental gains. Specifically, they want to specifically quantify their impact

through:

1. water used in food production (categories) that would have otherwise been disposed of

2. carbon dioxide equivalent emitted in the production of T2T food groups

3. greenhouse gas (GHG) reductions by diverting food waste from landfills

4. environmental inputs of the food rescue operations of T2T

Food Waste in Iowa City, Iowa
 The Environmental Protection Agency (EPA) promotes sustainable management of food.

They provide a systematic approach that seeks to reduce wasted food and its associated

impacts over the entire life cycle, starting with the use of natural resources, manufacturing,

sales and consumptions. The EPA defines wasted food as food that was not used for its

3

intended purpose, and it is managed in a variety of ways. Wasted food can be donated to feed

people, converted to animal feed, composted, or sent to landfills or combustion facilities.

Examples of wasted food could be unsold food from retail stores; plate waste, uneaten

prepared food or kitchen trimmings from restaurants, cafeterias, and households; or by-

products from food and beverage processing facilities.1 The EPA’s Food Recovery Hierarchy

(Figure 1) prioritizes how different organizations can act to prevent and divert wasted food.

Each tier of the hierarchy focuses on different management strategies from wasted food. They

consider the top levels to be the best ways to prevent and divert wasted food because they

create the largest societal and environmental benefit. T2T fits in on the second level of this

hierarchy and their operations benefits Johnson County’s economy and environment.

Figure 1. The EPA’s Food Recovery Hierarchy for sustainable management of food.

 There are many benefits of reducing food waste, including reducing the amount of

methane in landfills, reducing resource use associated with food production, improving soil

health and structure, increasing drought resistance, reducing the need for supplemental water,

fertilizers and pesticides, and improving sanitation, public safety and health. Food waste

reduction can increase people’s access to food, and it can feed more people instead of landfills.

4

An estimated 50 million Americans do not have access to enough food. In Iowa, one out of nine

people are food insecure and one out of every seven children faces hunger issues.2

Organizations such as T2T can help reduce food sent to landfills; in 2018 they rescued about 2.2

million pounds of food. T2T works with donors and agencies to fight food insecurity by

providing vulnerable populations with greater access to food. Recipients of donated food

include 50 area organizations from daycares to food pantries, and feed over 19,000 people a

year or 13% of Johnson County’s population. The Iowa City Landfill and Recycling Center is used

by residential and commercial haulers in Johnson County, Kalona and Riverside. The landfill

takes about 135,000 tons of trash each year of which approximately 36% is organic waste.3,4

Methodology

Project Scope

T2T environmental impacts were assessed for two sections of the food production life

cycle: pre-retail and post-retail. For this analysis, pre-retail was defined as all food production

processes prior to sale that lead to water and carbon inputs. This includes raising crops and

livestock, transport of goods, and inputs used to cook food goods at retail for prepared foods.

While T2T does not directly affect pre-retail environmental impacts through their operations,

these impacts help contextualize food waste in terms of the large input of natural resources

needed to produce food. Post-retail is defined as the balance of direct reduction of GHG

emissions from diverting food waste out of the local landfill and the carbon emission inputs

from T2T vehicular use in completing weekly routes.

Data Management
T2T provided the following: monthly and yearly data files containing weights of

collected food in different categories, vehicle information for collection vans, and metadata for

collection routes. Data were provided for 2017 and 2018, but route data were only available for

certain months of 2018. A series of data cleaning and processing steps were necessary prior to

quantitative analysis. All data management steps were performed using Python programming

language and R Software. First, the Microsoft Excel spreadsheets containing monthly and yearly

5

operations information were converted into comma separated value documents with each step

of the route parsed out (Appendix C). Locations were assigned index number identifiers, and

string matching was used to cross-reference pickup and drop-off locations and route names in

different files as names were not necessarily consistent across files (Appendix A). String

matching was performed using the FuzzyWuzzy Python package, which calculates the

Levenshtein distance between two string sequences.5 Calculating Levenshtein distance allows

for string matching even when the two strings are not identical (e.g. partial string matching).

Matches that were less than an 85% match were checked manually to confirm validity of the

match, and corrections to location names were made if necessary. The indexed route distances

were calculated using the Google Maps API to find driving distances between GPS coordinates

of latitude and longitude as decimals (Appendix D).

Pre-Retail
Water footprint values and GHG emissions for pre-retail were referenced from the

literature. For consistency in methodology, comprehensive papers that included a wide variety

of food items were used. Specific notes and references for each food item are provided in

Appendix F. In the T2T data files, collected foods were categorized as follows: Bakery, Dairy,

Produce, Meat, Deli/Italian, Entrée, Grocery, Beverage, Prepared Food, and Other. However,

water and carbon footprint values are typically estimated for specific food items; to calculate

the water and carbon footprints of food collected within these categories, common items were

assigned to each category (Table 1). Deli/Italian, Entrée, and Prepared Food were agglomerated

into one “Prepared” category, assuming some common ingredients in prepared foods. The

“Other” category was not included in analysis, as it often consists of miscellaneous items that

are not necessarily food items (e.g. flowers). For each food category, we created five different

possible scenarios for food items that may be collected. These scenarios weighted each food

item differently to better represent variability of foods collected within each category

(Appendix E). For example, for one scenario of the meat category, we considered it to be 50%

chicken, 20% beef, 15% pork and 15% turkey. After the total water inputs and carbon emissions

were calculated for each scenario, and then the average of the five different scenarios were

calculated to assess the overall impact of each major category.

6

Table 1. Breakdown of each food group

Meat Produce Dairy Bakery Grocery Prepared Beverage
Chicken Apples Eggs Bread Coffee Wheat bread Orange

Juice

Beef Bananas Milk Eggs Cereal Wheat flour Apple Juice

Turkey Oranges Yogurt Butter Oil Cheese Tea

Pork Potatoes Cheese Sugar Oatmeal Olive Oil Milk

 Lettuce Soy Milk Wheat
Flour

Beans Tomatoes Soy Milk

 Broccoli Milk Rice Tomato
Puree

 Strawberries Nuts Lettuce

 Avocados Dry Pasta Onions

 Carrots Juice Dry pasta

 Corn Chicken

 Beef

 Pork

 Ham

Assumptions and Uncertainties
For pre-retail life cycle analyses (LCA), there can be high levels of variability of water

inputs and carbon emissions depending on location of food production. The calculated values

for these inputs are estimates based on literature values and do not necessarily reflect the

exact inputs of producing the foods collected by T2T because it is beyond the scope of our

study to trace production sources of foods collected. Additional sources of uncertainty include

those on the data entry side. All data were manually inputted by different T2T volunteers, who

may enter the same food item into different categories, which may lead to inconsistency in the

data. Food items selected for each category (Appendix E) were assumed to be representative

for that category throughout the year; realistically, there could be a high level of variability in

food collected within each category. For example, the produce category may see a higher level

of avocados and strawberries during the summer (growing season) as opposed to other types

of food collected in the winter. In addition, not all food items collected are represented within

the category. While weighting factors were meant to capture variability, not all situations may

be represented in the five scenarios for collection categories.

7

Water Inputs
The total water footprint was considered as the sum of the grey, green and blue water

footprints. The U.S. weighted averages of grazing, mixed, and industrial values were used for

animal products while global averages were used for crops and crop products.6,7 The water

input of each food item was calculated for each scenario using the following equation:

The water inputs were then summed for each scenario and the category totals were averaged

for the five scenarios.

GHG Emissions
Unless otherwise stated in Appendix F, global mean values were used from Poore et al.

for carbon footprint factors of food items. This paper aggregated and analyzed a large set of

LCA publications on a variety of foods to investigate variability and trends in environmental

costs of producing food.8 The carbon emissions from producing each food item in the

categories were calculated using the following equation:

The carbon emissions were then summed for each scenario and the category totals were

averaged for the five scenarios. For the “Prepared” food category, an additional input of

cooking at retail was considered for the following meat items: chicken, beef, pork.9 These

inputs were calculated for each scenario and added to the GHG emission total for that scenario

prior to calculating the total average for the “Prepared” category.

Weight of
Collection
Category

Fraction of
Food Item

Water Used
for Food Item

per weight

Water Input for
Item in Collection

Category

Weight of
Collection
Category

Fraction of
Food Item

Carbon
Emitted for
Food Item
per weight

Carbon Emitted for
Item in Collection

Category

8

Post-Retail
 To calculate post-retail emissions saved from the landfill, we calculated the amount of

methane that would have been emitted for the mass of food collected. Assumptions and

calculations followed those detailed in Chapter 10 of the Environmental Engineering:

Fundamentals, Sustainability, Design textbook by Mihelcic and Zimmerman for methane

emissions from organic waste in landfills.10 First, the total mass of food collected was converted

into a dry mass, assuming a 70% moisture content of food. The total masses of carbon,

hydrogen, oxygen, and nitrogen in the food were calculated from the dry mass. We assume

60% of food waste is decomposed within the landfill. The moles methane produced per kg of

food is calculated from the following equation:

4𝑎 + 𝑏 − 2𝑐 − 3𝑑

8
= 𝑚𝑜𝑙𝑒𝑠 𝐶𝐻4

Where a, b, c, and d are the masses of degraded carbon, hydrogen, oxygen, and nitrogen,

respectively. The moles methane are then converted to a volume of methane using the ideal

gas law (0.0224 m3 gas/mole gas). Since the Johnson County landfill has an on-site gas recovery

facility, we assumed that 80% of landfill gas is collected, and the remaining 20% is uncollected

in the landfill. Of the 20% that is not collected, approximately 20% is oxidized within the landfill

to produce methane emissions (overall, 16% of the original moles methane calculated is

assumed to be emitted from the landfill.) The volume methane emitted is then converted to

CO2e by using a global warming potential of 25 for methane.

Route-based Calculations
The CO2e emissions from vehicles were calculated for each route using the metadata for

the vehicles T2T uses and the driving distance of each route. Routes change every day of the

week, and they vary from month to month. First, we used the GPS decimal coordinates for each

pickup and drop-off locations (organized by route) to determine the distance traveled on each

route using the Google Maps Application Programing Interfaces (API). The Google Maps API

calculates driving distance, rather than the Euclidian distance (the shortest distance between

two points). The route includes the distance from the T2T headquarters to the first pickup

location and the distance from the last drop-off location back to the T2T headquarters. The

9

calculator uses the distance_matrix function from the Python Google Maps library. Each

distance is multiplied by the corresponding Tailpipe CO2e Emissions factor for the T2T van used

for each route to calculate the route’s emissions (Table 2). We calculated the number of times a

route was driven for each month to obtain its total monthly emissions number.

Table 2. Vehicle Emission Factors

Vans Year Make Emissions Factor

#1 Old Ford 1998 Ford 684

#2 Ford 2006 Ford 592

#3 Chevy 2008 Chevy 468

#4 3500 2013 Nissan 363

#5 200 2014 Nissan 363

#6 2500 2014 Nissan 363

#7 N200 2016 Nissan 353

#8 Transit 2016 Ford 548

Penske 2018 Penske 246

To match the driving distance calculations, we calculated the monthly sum of food

collected for each route on a given weekday. We then calculated the CO2e emissions that were

saved using the same assumptions and equations as previously described. To find the net CO2e

for a route, we finally calculated:

 The equation follows that a positive net balance indicates more CO2e saved from the

landfill than emitted by driving T2T vehicles (positive impact), and a negative net balance

indicates that more CO2e was emitted from driving T2T vehicles than saved from the landfill

(negative impact).

CO2e Inputs from
T2T Vehicles

Net CO2e Balance
for Route

CO2e Saved from
Landfill

10

Results and Discussion

 The total weight of food collected in 2017 was 2,037,151 lb, and in 2018 was 2,396,094

lb. The distribution of weight within each T2T collection category for each year is displayed in

Figures 2 and 3. The top three collection categories in 2017 were Bakery, Dairy, and Grocery,

whereas the top three categories in 2018 were Bakery, Dairy, and Produce. Bakery was

consistently one of the top collection categories, which is likely because many retail locations

have baked fresh daily goods that are not sold the following day.

Figure 2. Distribution of the total weight of food collected in each category in 2017.

Figure 3. Distribution of the total weight of food collected in each category in 2018.

0

100000

200000

300000

400000

500000

A
m

o
u

n
t

C
o

lle
ct

ed
 (

lb
)

0

100000

200000

300000

400000

500000

600000

700000

A
m

o
u

n
t

C
o

lle
ct

ed
 (

lb
)

11

Pre-Retail

Water Footprint

The total embedded water for foods collected in 2017 was 2,831,705 m3. This total

value is the sum of categorical averages of the five scenarios detailed in Appendix E. The

categorical averages of embedded water for the scenarios are displayed in Figure 4.

Figure 4. Average embedded water for each T2T collection category in 2017. Each average is for total
embedded water for the five scenarios.

The Grocery category has the highest average total embedded water value of 1,034,266

m3. T2T collects a larger amount (in weight) for the grocery category, and it includes food items

with high embedded water footprints, for example, coffee. While meat items have high

embedded water footprints, the collection weight was less than other categories, which

resulted in a relatively low average total embedded water for the meat category. The total

embedded water for food collected in 2018 was 3,536,867 m3. The categorical averages of

embedded water are displayed in Figure 5. Once again, Grocery had the highest average total

embedded water value.

0

200000

400000

600000

800000

1000000

1200000

Produce Meat Dairy Bakery Grocery Prepared Beverage

Em
b

ed
d

ed
 W

at
er

 (
m

3
)

12

Figure 5. Average embedded water for each T2T collection category in 2018. Each average is for total
embedded water for the five scenarios.

GHG Emissions
The total GHG emissions for producing food that was collected in 2017 was 5,459 tons

CO2e. This total value is the sum of categorical averages of the five scenarios detailed in

Appendix E. The categorical averages of GHG emissions for the scenarios are displayed in

Figures 6 and 7. The highest GHG emissions from producing food was in the Dairy category,

with an average total of 1,466 tons CO2e (Figure 5). High collection weight within the Dairy

category as well as the high carbon footprint of specific items (e.g. cheese) cause large GHG

emissions. In contrast to the water footprint, the Meat category has a high total average GHG

emission relative to other categories considered in this report. The disproportionately high

carbon footprint of meat items caused this value to be comparatively elevated; for example,

beef has a 99.5 kg CO2e/kg global average carbon footprint factor, which is the highest carbon

footprint considered in this analysis.

0

200000

400000

600000

800000

1000000

1200000

Produce Meat Dairy Bakery Grocery Prepared Beverage

Em
b

ed
d

ed
 W

at
er

 (
m

3)

13

Figure 6. Average GHG emissions for each T2T collection category in 2017. Each average is for total GHG
emissions for the five scenarios.

In 2018, the total GHG emissions for producing collected foods was 6,952 tons CO2e

(Figure 6). T2T collected more meat in 2018 than in 2017, resulting in the Meat category having

the highest GHG emissions associated with pre-retail, followed by the Dairy category.

Figure 7. Average GHG emissions for each T2T collection category in 2018. Each average is for the total
GHG emissions for the five scenarios.

Post-Retail
 In 2017, the amount of carbon emissions that would have occurred if food had not been

collected by T2T was estimated to be 26.9 tons CO2e. In 2018, the carbon emissions were

0

200

400

600

800

1000

1200

1400

1600

Produce Meat Dairy Bakery Grocery Prepared Beverage

G
H

G
 E

m
is

si
o

n
s

(t
o

n
s

C
O

2
e)

0

500

1000

1500

2000

2500

Produce Meat Dairy Bakery Grocery Prepared Beverage

G
H

G
 E

m
is

si
o

n
s

(t
o

n
s

C
O

2
e)

14

estimated to be 31.7 tons CO2e. From the Iowa City Climate Action Plan, total municipal

emissions in 2015 were 44,194 tons CO2e.4 Approximately 54% of these emissions were due to

solid waste decomposition in the landfill (23,997 tons CO2e). Although the fraction of emissions

saved from the landfill is relatively small, the weight of collected food represents just a small

proportion of total tons of organic waste collected by the landfill (approximately 2-3%).

Additionally, comparisons reported here are approximations because data from the Johnson

County Landfill for 2017 and 2018 were not available.

Route-based Calculations

 Route-based balances were calculated for each month in 2018 (Table 3). Positive

balances indicate more emissions saved from landfill than emitted from driving T2T vehicles for

that route. On average, the US Foods-UNFI route had the best emissions balance and it had the

highest total emissions saved from the landfill (after subtracting the vehicle’s emissions). Some

routes, such as the Iowa City Walmart/Aldi route, had consistently negative emission balances,

which may be from the specific car’s emissions for that route (0.02 ton CO2e) which were higher

compared to other routes.

Table 3. The average monthly balance of emissions saved with T2T vehicle emissions deducted and the
yearly total balance for 2018.

Route Name
Average Monthly
Emissions Balance
(tons CO2e)

Yearly Total
Emissions Balance
(tons CO2e)

Yearly Total
Emissions Balance
(pounds CO2e)

Coralville 0.10 1.20 2400

Costco 0.10 1.14 2280

Dorms-UIHC 0.01 0.11 220

FM-Kalona -0.01 -0.08 -160

Fareway West 0.03 0.16 320

IC Kum-Go 0.00 0.00 0

IC Wal-Aldi -0.04 -0.53 -1060

Iowa City 0.15 1.78 3560

NDH-LM -0.02 -0.21 -420

School District 0.00 0.01 20

Trader Joe’s 0.14 1.68 3360

US-UNFI 0.77 9.23 18469

Waterfront HyVee 0.25 3.05 6100

T2T Total (Sum) 1.48 tons CO2e 17.54 tons CO2e 35,089 lbs. CO2e

15

Conclusion

Our pre-retail analysis confirms the large amount of resources needed to produce food.

T2T’s operations help ensure that more food goes towards feeding people so that these

resource inputs are not “wasted”. Understanding the amount of resources that go into

producing food can help people understand the environmental impacts of the food they eat.

Our post-retail findings suggest that T2T has a net positive environmental impact for

GHG emissions. In both 2017 and 2018, the Nissan vehicles emit less CO2e than the Ford Transit

models. For that reason, our recommendation is to choose Nissan vans when utilizing vehicles

for route delivery. In addition, we would suggest purchases cars that have a lower emission

rate. Implementing these practices would help to further decrease T2T’s carbon footprint and

their environmental impact in the long run. Additionally, the shortest routes with larger

donations are the most efficient, which is expected. The yearly total emissions saved after T2T

vehicular inputs is equivalent to the CO2 emissions from 17,400 pounds of coal burned or more

than 2 million smartphones charged or about 39,000 miles driven by an average passenger

vehicle.11

16

References
(1) US EPA. Food Recovery Hierarchy https://www.epa.gov/sustainable-management-

food/food-recovery-hierarchy (accessed Jun 5, 2019).
(2) Feeding America: Hunger in Iowa https://www.feedingamerica.org/hunger-in-

america/iowa (accessed Jun 5, 2019).
(3) Landfill and Recycling Center https://www.icgov.org/city-government/departments-and-

divisions/landfill-and-recycling-center (accessed Jun 5, 2019).
(4) Iowa City Climate Action and Adaptation Plan; 2018.
(5) Gilleland, M. Levenshtein Distance

https://people.cs.pitt.edu/~kirk/cs1501/Pruhs/Spring2006/assignments/editdistance/Lev
enshtein Distance.htm (accessed May 9, 2019).

(6) Mekonnen, M.; Hoekstra, A. Y. The Green, Blue and Grey Water Footprint of Animals and
Animal Products; Unesco-IHE Institute for Water Education: Delft, 2010.

(7) Mekonnen, M. M.; Hoekstra, A. Y. The Green, Blue and Grey Water Footprint of Crops
and Derived Crop Products. Hydrol. Earth Syst. Sci 2011, 15, 1577–1600.
https://doi.org/10.5194/hess-15-1577-2011.

(8) Poore, J.; Nemecek, T. Reducing Food’s Environmental Impacts through Producers and
Consumers. Science (80-.). 2018, 360 (6392), 987–992.
https://doi.org/10.1126/SCIENCE.AAQ0216.

(9) Hamerschlag, K.; Venkat, K. Meat Eaters Guide to Climate Change and Health Life Cycle
Assessments: Methodology and Results; 2011.

(10) Mihelcic, J. R.; Zimmerman, J. B. Environmental Engineering: Fundamentals,
Sustainability, Design, 2nd ed.; John Wiley & Sons, Inc., 2013.

(11) US EPA. Greenhouse Gas Equivalencies Calculator
https://www.epa.gov/energy/greenhouse-gas-equivalencies-calculator (accessed Jun 5,
2019).

(12) Vergé, X. P. C.; Maxime, D.; Dyer, J. A.; Desjardins, R. L.; Arcand, Y.; Vanderzaag, A.
Carbon Footprint of Canadian Dairy Products: Calculations and Issues. J. Dairy Sci. 2013,
96 (9), 6091–6104. https://doi.org/10.3168/JDS.2013-6563.

(13) Nette, A.; Wolf, P.; Schlüter, O.; Meyer-Aurich, A.; Nette, A.; Wolf, P.; Schlüter, O.;
Meyer-Aurich, A. A Comparison of Carbon Footprint and Production Cost of Different
Pasta Products Based on Whole Egg and Pea Flour. Foods 2016, 5 (4), 17.
https://doi.org/10.3390/foods5010017.

(14) Hu, A. H.; Chen, C.-H.; Huang, L. H.; Chung, M.-H.; Lan, Y.-C.; Chen, Z. Environmental
Impact and Carbon Footprint Assessment of Taiwanese Agricultural Products: A Case
Study on Taiwanese Dongshan Tea. Energies 2019, 12 (1), 138.
https://doi.org/10.3390/en12010138.

17

Appendix A: Python code to match location names

1. """
2. Created on Sat Apr 6 16:16:55 2019
3.
4. @author: Erica
5. """
6.
7. import pandas
8. from fuzzywuzzy import process
9. import numpy
10. import os
11.
12. COL_NAMES = ['P1', 'P1id', 'P2', 'P2id', 'P3', 'P3id', 'P4', 'P4id', 'P5', 'P5id', 'P6'

, 'P6id', 'D1', 'D1id', 'D2', 'D2id', 'D3', 'D3id', 'D4', 'D4id', 'D5', 'D5id', 'D6', '
D6id']

13.
14. def read_file(fname):
15. """ Reads in csv file """
16.
17. if os.path.exists(fname):
18. file_df = pandas.read_csv(fname)
19. return file_df
20.
21. else:
22. print("Error: Route data file does not exist. Please check file path")
23. return
24.
25. def create_route_dfcopy(route_df):
26. """ Creates a copy of the route dataframe to populate with matched location ID numb

ers
27.
28. Inputs
29. ------
30. route_df : pandas DataFrame
31.
32. Returns
33. -------
34. pandas DataFrame
35. """
36.
37. route_df_copy = route_df.copy()
38. # Iterate through global variable list column names and insert id columns
39. for i in range(len(COL_NAMES)):
40. colname = COL_NAMES[i]
41. if "id" in colname:
42. # all IDs will have a default of -1
43. route_df_copy.insert(i, colname, numpy.nan, allow_duplicates=True)
44. else:
45. continue
46.
47. return route_df_copy
48.
49. def match_pickuploc_id(route_df, loc_df):
50. """ Uses fuzzywuzzy string matching to match location id in route file to id in the

 indexing file
51.
52. Inputs
53. ------
54. route_df : pandas DataFrame

18

55. loc_df : pandas DataFrame
56.
57. Returns
58. -------
59. matched_df : pandas DataFrame
60. unmatched_set : set
61. """
62.
63. # Creating a dictionary from the indexed locations mapping loc name to ID
64. loc_dict = dict(zip(loc_df.Location, loc_df.ID))
65. loc_dict = {k.lower(): locid for k, locid in loc_dict.items()}
66. loc_names = loc_dict.keys()
67. bad_list = []
68. route_columns = route_df.columns
69. matched_df = create_route_dfcopy(route_df)
70. counter = 0
71.
72. # Iterate through the route ID file rows to try and match location names
73. for row in route_df.itertuples(index=False):
74.
75. # Go cell by cell to match each location with its best match in the locations f

ile
76. for icell in range(len(route_columns)):
77. icolname = route_columns[icell]
78. cell = row[icell]
79.
80. # Matching the location name in route file to closest name in locations fil

e
81. if cell != "NA" and type(cell) is str:
82.
83. # Pre-

treating location names by making lowercase and removing leading and ending whitespaces

84. mod_loc = cell.lower()
85. mod_loc = mod_loc.lstrip()
86. mod_loc = mod_loc.rstrip()
87.
88. # Fixing specific cases where matching won't work
89. if mod_loc[:2] == "cv":
90. mod_loc = "coralville" + mod_loc[2:]
91.
92. if mod_loc == "nl food pantry":
93. mod_loc = "north liberty" + mod_loc[2:]
94.
95. if mod_loc == "dvip":
96. mod_loc = "domestic violence intervention program"
97.
98. if "community serving community" in mod_loc:
99. mod_loc = "community serving community child care center"
100.
101. if mod_loc == "coralville kum&go":
102. mod_loc = "2nd st. kum & go"
103.
104. # Find the closest match using fuzzywuzzy
105. high_match = process.extractOne(mod_loc, loc_names)
106.
107. # set a minimum match threshold below which the match is conside

red unacceptable. 100 is a perfect match
108. min_match = 85
109. if high_match[1] <= min_match:
110. bad_list.append((mod_loc, high_match))

19

111. continue
112.
113. # if match is considered acceptable, modify the match dataframe

to have the location index
114. matched_id = loc_dict[high_match[0]]
115. idcolname = icolname + 'id'
116. matched_df.at[counter, idcolname] = matched_id
117.
118. else:
119. continue
120. # increase the row counter
121. counter += 1
122.
123. # Create a unique set of the unacceptable matches
124. unmatched_set = set(bad_list)
125.
126. return matched_df, unmatched_set
127.
128.
129.
130. def main():
131. tt_homelocfile = "C:/Users/Erica/OneDrive - University of Iowa/2019/Classes/

Spring2019/CEE5993_CCPSD/Data/eawcopy_Locations_Indexed_v2.csv"
132. tt_homeroutefile = "C:/Users/Erica/OneDrive - University of Iowa/2019/Classe

s/Spring2019/CEE5993_CCPSD/Data/eawcopy_Route_Total_ID.csv"
133. tt_officelocfile = "C:/Users/ewiener/OneDrive - University of Iowa/2019/Clas

ses/Spring2019/CEE5993_CCPSD/Data/eawcopy_Locations_Indexed_v2.csv"
134. tt_officeroutefile = "C:/Users/ewiener/OneDrive - University of Iowa/2019/Cl

asses/Spring2019/CEE5993_CCPSD/Data/eawcopy_Route_Total_ID.csv"
135. tt_matchedfile = "C:/Users/Erica/OneDrive - University of Iowa/2019/Classes/

Spring2019/CEE5993_CCPSD/Data/eaw_matchedindices_042819.csv"
136. # When running from office
137. #route_df = read_file(tt_officeroutefile)
138. #loc_df = pandas.read_csv(tt_officelocfile, usecols=[0,1])
139.
140. # When running from home
141. route_df = read_file(tt_homeroutefile)
142. loc_df = pandas.read_csv(tt_homelocfile, usecols=[0,1])
143.
144. ploc = route_df.columns.get_loc("P1")
145. dloc = route_df.columns.get_loc("D6")
146. route_df_mod = route_df.iloc[:,ploc:dloc+1]
147.
148. print("matching indices now")
149. matched_df, unmatched_set = match_pickuploc_id(route_df_mod, loc_df)
150. print("finished matching successfully")
151.
152. print("unmatched locations are: ", unmatched_set)
153. print("writing matched file")
154. matched_df.to_csv(tt_matchedfile, index=False)
155.
156. main()

20

Appendix B: Python code for analyzing monthly files

1. # -*- coding: utf-8 -*-
2. """
3. Created on Wed Mar 20 13:09:38 2019
4.
5. @author: ewiener
6. """
7.
8. import pandas
9. import os
10. import calendar
11. import math
12.
13. # GLOBAL VARIABLES
14.
15. PICKUP_LOCNAMES = []
16. WEEKDAY_DICT = {0: "mon", 1: "tue", 2: "wed", 3: "thu", 4: "fri", 5: "sat", 6: "sun"}
17. ROUTE_DICT = {'Waterfront': 'Waterfront Hyvee', 'Iowa City': 'Iowa City', 'Coralville':

 'Coralville', 'Costco': 'Costco', 'IC Walmart/Aldi': 'IC Wal-Aldi', 'N': 'NDH-
LM', 'Kalona': 'FM-
Kalona', "Trader Joe's": 'Trader Joes', 'School District': 'School District', 'Fareway
West': 'Fareway West'}

18. LB_TO_KG = 0.4536
19. MW_H = 1.008
20. MW_C = 12.011
21. MW_O = 15.999
22. MW_N = 14.007
23.
24.
25. def calculate_foodmethane(foodwt):
26. """ Calculates the CO2e emitted from landfill given weight of food in lb
27.
28. Inputs
29. ------
30. foodwt : float
31.
32. Returns
33. -------
34. float
35. """
36.
37. # percentage of elements in dry mass of food
38. perc_C = 0.48
39. perc_H = 0.064
40. perc_O = 0.376
41. perc_N = 0.026
42.
43. # convert food weight to kg and dry mass
44. foodwt_kg_dry = 0.3 * foodwt * LB_TO_KG
45.
46. # calculate degraded element masses
47. degr_C = 0.6 * perc_C * foodwt_kg_dry
48. degr_H = 0.6 * perc_H * foodwt_kg_dry
49. degr_O = 0.6 * perc_O * foodwt_kg_dry
50. degr_N = 0.6 * perc_N * foodwt_kg_dry
51.
52. # calculate moles methane
53. mol_C = degr_C * 1000.0 / MW_C
54. mol_H = degr_H * 1000.0 / MW_H

21

55. mol_O = degr_O * 1000.0 / MW_O
56. mol_N = degr_N * 1000.0 / MW_N
57. mol_methane = float((4*mol_C+mol_H-2*mol_O-3*mol_N) / 8.0)
58.
59. # calculate volume methane emitted and convert to CO2e
60. vol_methane_emitted = 0.0024 * mol_methane * 0.16
61. equiv_emitted = vol_methane_emitted/22.4*16.0*25.0
62.
63. return equiv_emitted
64.
65. def calc_monthly_routemethane(route_sum_dict):
66. """ Calculates methane emitted for each route by iterating through a dict for month

ly data
67.
68. Inputs
69. ------
70. route_sum_dict : dict
71. dict mapping route names to weekday sums of food
72.
73. Returns
74. -------
75. dict
76. """
77.
78. route_methane_dict = {}
79. for route in route_sum_dict.keys():
80. if route not in route_methane_dict.keys():
81. route_methane_dict[route] = {}
82. for key in route_sum_dict[route].keys():
83. methane = calculate_foodmethane(route_sum_dict[route][key])
84. route_methane_dict[route][key] = methane
85.
86. return route_methane_dict
87.
88. def get_routes_monthly(file_list):
89. """ Returns a set of route name strings based on the sheets of monthly files """
90.
91. route_list = []
92. for fname in file_list:
93. f_monthlyobj = MonthlyData(fname)
94. f_monthlyobj.read_monthly_files()
95.
96. print(fname)
97. for route_name in f_monthlyobj.xl_file.keys():
98. # checking if the sheet is a route sheet and not a totals sheet
99. if "by date" in route_name.lower() or "by type" in route_name.lower():
100. continue
101.
102. # checking that the route is not one of the special routes
103. if route_name != "FRANK" and route_name != "OTHER" and route_name !=

 "Donors":
104. route_list.append(route_name)
105.
106. return set(route_list)
107.
108. def read_index_file(index_fname):
109.
110. if os.path.exists(index_fname):
111. index_file = pandas.read_excel(index_fname)
112. else:
113. print("Error: Index file does not exist. Please check file path")

22

114. index_file = {}
115.
116. return index_file
117.
118. def match_rname_rid(index_file):
119. """ Create a dictionary that allows for matching routes between monthly file

s and route data
120.
121. Inputs
122. ------
123. index_file : Pandas object
124. The route index file read in previously
125.
126. Returns
127. -------
128. dict"""
129.
130. rid_dict = {}
131. for row in index_file.itertuples():
132. rname = getattr(row, "Rname")
133. rname_mod = rname.strip()
134. rid = getattr(row, "ID")
135. day = getattr(row, "Day")
136. month = getattr(row, "month")
137. year = getattr(row, "year")
138. emissions = getattr(row, "Emissions")
139. if rname_mod in ROUTE_DICT.keys():
140. rid_dict[(ROUTE_DICT[rname_mod].lower(), month.lower(), year, day)]

= (rid, emissions)
141. if rname_mod == 'UNFI/US Foods' or rname_mod == 'UNFI' or rname_mod == '

US Foods':
142. rid_dict[('us-unfi', month.lower(), year, day)] = (rid, 5.73)
143.
144. day_list = ['mon', 'tue', 'wed', 'thu', 'fri']
145. month_list = ['jan', 'feb', 'mar', 'apr', 'may', 'aug', 'sep', 'nov', 'dec']

146. for month in month_list:
147. for day in day_list:
148. rid_dict[('dorms-uihc', month, 2018, day)] = (3000, 2.3595)
149. rid_dict[('ic kum-go', month, 2018, day)] = (3000, 1.089)
150.
151. return rid_dict
152.
153. def get_carbon_inputs(route_count_dict, rid_dict, month, year):
154. """ Calculates the amount of carbon emissions associated with driving routes

 """
155.
156. carbon_dict = {}
157. if month <= 3:
158. route_mon = 2
159. if month > 3 and month <= 6:
160. route_mon = 5
161. if month > 6 and month <= 8:
162. route_mon = 7
163. if month > 8 and month <= 12:
164. route_mon = 9
165. month_abbrev = calendar.month_abbr[route_mon]
166. for route in route_count_dict.keys():
167. if not route in carbon_dict.keys():
168. carbon_dict[route] = {}
169. for weekday in route_count_dict[route].keys():

23

170. key = (route.lower(), month_abbrev.lower(), year, weekday)
171. if key not in rid_dict.keys():
172. continue
173. if not weekday in carbon_dict[route].keys():
174. carbon_dict[route][weekday] = 0
175. carbon = route_count_dict[route][weekday] * rid_dict[key][1]
176. carbon_dict[route][weekday] = carbon
177.
178. return carbon_dict
179.
180. def carbon_balance(input_dict, methane_dict):
181. """ Calculate the balance of T2T inputs with emissions saved from landfill f

rom food collected """
182.
183. route_balance_dict = {}
184. bad_list = []
185. for route in methane_dict.keys():
186. if not route in route_balance_dict.keys():
187. route_balance_dict[route] = 0
188. total_balance = 0
189. for weekday in methane_dict[route].keys():
190. if weekday not in input_dict[route].keys():
191. continue
192. if math.isnan(methane_dict[route][weekday]):
193. bad_list.append(("monthly", route, weekday))
194. if math.isnan(input_dict[route][weekday]):
195. bad_list.append(("routes", route, weekday))
196.
197. balance = methane_dict[route][weekday] - input_dict[route][weekday]

198. total_balance += balance
199. route_balance_dict[route] = total_balance
200.
201. print(set(bad_list))
202. return route_balance_dict
203.
204. class MonthlyData(object):
205.
206. """
207. """
208.
209. def __init__(self, data_fname):
210. """"""
211.
212. # Check if the file names are valid
213. self.valid_datafname = False
214. self.data_fname = data_fname
215. self.xl_file = {}
216.
217. if os.path.exists(data_fname):
218. self.valid_datafname = True
219. else:
220. if not os.path.exists(data_fname):
221. print("Error: Monthly data file does not exist. Please check fil

e path")
222. return
223.
224.
225. def read_monthly_files(self):
226. """
227. Reads the monthly data file into an OrderedDict object

24

228. """
229.
230. if self.valid_datafname == False:
231. return
232.
233. self.xl_file = pandas.read_excel(self.data_fname, sheet_name=None)
234.
235.
236. def monthly_typesum(self, type_bool):
237. """ Calculates the monthly sum of weight of food collected for each rout

e and sorts into weekdays.
238.
239. Inputs
240. ------
241. type_bool : boolean
242. True if summing based on types, False if doing a total sum
243.
244. Returns
245. -------
246. dict
247. Maps the route name to a dictionary mapping (weekday, food type) tup

les or just weekdays to the collected sum for the month
248. {route_str: {(weekday_str, type_str): sum, # times collected}}
249. """
250.
251. typesum_dict = {}
252. route_count_dict = {}
253.
254. # Iterate through each sheet in the monthly data file
255. for route_name in self.xl_file.keys():
256. food_sheet_dict = {}
257. count_sheet_dict = {}
258.
259. # checking if the sheet is a route sheet and not a totals sheet
260. if "by date" in route_name.lower() or "by type" in route_name.lower(

):
261. continue
262.
263. # checking that the route is not one of the special routes
264. if route_name != "FRANK" and route_name != "OTHER" and route_name !=

 "Donors":
265. route_sheet = self.xl_file[route_name]
266. if not route_name in typesum_dict.keys():
267. typesum_dict[route_name] = {}
268.
269. # iterate through each row of the sheet and find the sum of each

 type
270. day_set = []
271. for row in route_sheet.itertuples():
272. date_ts = getattr(row, "Date")
273. type_name = getattr(row, "Type")
274. pickup = getattr(row, "Pickup")
275. if type(date_ts) is not float and type(date_ts) is not str:

276. weekday = date_ts.weekday()
277. else:
278. continue
279.
280. # Finding the sum based on the weekday since routes are the

same each weekday
281. if weekday in WEEKDAY_DICT.keys():

25

282. if type_bool == True:
283. row_key = (WEEKDAY_DICT[weekday], type_name)
284. else:
285. row_key = WEEKDAY_DICT[weekday]
286. collected_amt = getattr(row, "Collected")
287. if not row_key in food_sheet_dict.keys():
288. food_sheet_dict[row_key] = 0
289. if not math.isnan(collected_amt):
290. food_sheet_dict[row_key] += collected_amt
291. else:
292. food_sheet_dict[row_key] += 0
293.
294. if not row_key in count_sheet_dict.keys():
295. count_sheet_dict[row_key] = 0
296. if date_ts not in day_set:
297. count_sheet_dict[row_key] += 1
298. day_set.append(date_ts)
299.
300. # add the route to sums to the dictionary
301. typesum_dict[route_name] = food_sheet_dict
302. route_count_dict[route_name] = count_sheet_dict
303.
304. return typesum_dict, route_count_dict
305.
306.
307. def main():
308.
309. #main fn here
310.
311. # Retrieve all monthly files in directory
312. monthly_file_dirpath = "C:/Users/ewiener/OneDrive - University of Iowa/2019/

Classes/Spring2019/CEE5993_CCPSD/Data/Monthly/2018/"
313. monthly_filelist = [os.path.join(monthly_file_dirpath, fname) for fname in o

s.listdir(monthly_file_dirpath) if os.path.isfile(os.path.join(monthly_file_dirpath, fn
ame))]

314. print(monthly_filelist)
315.
316. tt_officeindicesfile = "C:/Users/ewiener/OneDrive - University of Iowa/2019/

Classes/Spring2019/CEE5993_CCPSD/Data/eaw_route_inputs.xlsx"
317. index_file = read_index_file(tt_officeindicesfile)
318. rid_dict = match_rname_rid(index_file)
319. type_bool = False
320. agg_balance_list = []
321.
322. # iterate through all monthly files in the given directory
323. for fname in monthly_filelist:
324. datestr = fname[-11:-5]
325. month_num = int(datestr[:2])
326. year_num = int(datestr[-4:])
327. month_abbrev = calendar.month_abbr[month_num]
328. print(month_abbrev)
329.
330. tt_obj = MonthlyData(fname)
331.
332. tt_obj.read_monthly_files()
333. monthlysumdict, count_sheet_dict = tt_obj.monthly_typesum(type_bool)
334.
335. print(count_sheet_dict)
336. monthlymethanedict = calc_monthly_routemethane(monthlysumdict)
337. print(monthlymethanedict)

26

338. route_carbon_dict = get_carbon_inputs(count_sheet_dict, rid_dict, month_
num, year_num)

339. print(route_carbon_dict)
340. balance_dict = carbon_balance(route_carbon_dict, monthlymethanedict)
341. #print(balance_dict)
342. agg_balance_list.append(balance_dict)
343.
344. # aggregate all monthly data calculated balances
345. agg_df = pandas.DataFrame(agg_balance_list)
346.
347. # write aggregated data
348. final_fname = "C:/Users/ewiener/OneDrive - University of Iowa/2019/Classes/S

pring2019/CEE5993_CCPSD/Data/eaw_balance.csv"
349. agg_df.to_csv(final_fname)
350.
351.
352.
353. tt_officetestfile = "C:/Users/ewiener/OneDrive - University of Iowa/2019/Cla

sses/Spring2019/CEE5993_CCPSD/Data/Monthly/2018/TTMonthly_022018.xlsx"
354.
355.
356. main()

27

Appendix C: R code for extracting route information

 ##

 ####### T2T Impact Study Data Any ########

 ####### Vehicle Info CSV Files ########

 ##



 # This script extracts each route for each month along with vehicle IDs



 rm(list=ls(all=TRUE)) ; cat("\014")



 library(sp); library(raster); library(ggplot2); library(rgdal);

 library(plyr); library(tidyr); library(data.table);



 pathL =
"D:/Courses/CEE_5993_Com_Centered_Prob_Solv_Design/Vehicle_Information_CSV_Files" #Use
pathfile rather than setwd if saving files in different locations

 all = list.files(path = pathL,pattern="*.csv",full.names=T)

 #number = 2



 FUN1 <- function(number){ # fun to extract information from each file within fold

 car=read.csv(file = all[number],header = F ,sep=",")



 month = as.character(substr(unlist(strsplit(all[number],"/"))[[5]],27,29))

 year = as.numeric(substr(unlist(strsplit(all[number],"/"))[[5]],31,34))

 carcar = car[,-3]

 mon = car[1:11,]

 tue = car[13:24,]

 wed = car[25:36,]

 thu = car[37:48,]

 fri = car[49:60,]

 sat = car[61:72,]



 week <- list(mon,tue,wed,thu,fri,sat)



 days = c("mon","tue","wed","thu","fri","sat")



 weekly <- list()



 list <- list()

 #drops <- list()

 #picks <- list()



 for(d in 1:length(days)){



 #d = 3

 day = week[[d]]



 day$Day = paste(days[d])

 #dayday = day[-c(1,2),]

 colnames(day) = c("Route","PickUp","DropOff","Additional","Vols","Van","Day")

 day$Route = as.character(day$Route)

28

 day$Rnumb = sapply(strsplit(as.character(day$Route), "\\."), `[`, 1)

 day$Rname = sapply(strsplit(as.character(day$Route), "\\."), `[`, 2)



 if(any(is.na(day$Rname))){day <- day[-which(is.na(day$Rname)),]} # remove values with
NA





 day$P1 = sapply(strsplit(as.character(day$PickUp), "\\+"), `[`, 1)

 day$P2 = sapply(strsplit(as.character(day$PickUp), "\\+"), `[`, 2)

 day$P3 = sapply(strsplit(as.character(day$PickUp), "\\+"), `[`, 3)

 day$P4 = sapply(strsplit(as.character(day$PickUp), "\\+"), `[`, 4)

 day$P5 = sapply(strsplit(as.character(day$PickUp), "\\+"), `[`, 5)

 day$P6 = sapply(strsplit(as.character(day$PickUp), "\\+"), `[`, 6)



 day$D1 = sapply(strsplit(as.character(day$DropOff), "\\+"), `[`, 1)

 day$D2 = sapply(strsplit(as.character(day$DropOff), "\\+"), `[`, 2)

 day$D3 = sapply(strsplit(as.character(day$DropOff), "\\+"), `[`, 3)

 day$D4 = sapply(strsplit(as.character(day$DropOff), "\\+"), `[`, 4)

 day$D5 = sapply(strsplit(as.character(day$DropOff), "\\+"), `[`, 5)

 day$D6 = sapply(strsplit(as.character(day$DropOff), "\\+"), `[`, 6)



 day$monthmonth = month

 day$yearyear = year



 #pickups = gather(day[,10:15], key ="Order",value="Location")

 #dropoffs = gather(day[,16:21], key ="Order",value="Location")



 #drops[[d]] <- dropoffs

 #picks[[d]] <- pickups

 list[[d]] <- day

 totals <- rbindlist(list)

 }

 # weekly <- rbindlist(weektotals)

 # return(weekly)

 weekly[[d]] <- totals



 }



 twoT = lapply(1:length(all), function(i){ FUN1(i) }) #Use Lapply for a list of the
same length as x(temp) using function (FUN1)

 allT = rbindlist(twoT)



 allT$ID <- seq.int(nrow(allT))



 write.csv(allT,
"D:/Courses/CEE_5993_Com_Centered_Prob_Solv_Design/Vehicle_Information_CSV_Files/Route_
Total_ID.csv", row.names = F)



 #totals <- do.call(rbind,drops)

 # unis <- trimws(totals$Location, which = "both")

 # unis <- as.data.frame(unis)

 # unique(unis)



29

Appendix D: Python code for distance calculations

1. """
2. Finds the distances of T2T routes and calculates the carbon dioxide equivalents
3. of the respective routes.
4.
5. """
6.
7.
8. import pandas as pd
9. import googlemaps
10. from numpy import loadtxt
11. import numpy as np
12.
13. #function to upload files
14. def file_uploader (filename):
15. global new_variable
16. df = pd.DataFrame.from_csv(filename)
17. df = df.values.tolist()
18. new_variable = []
19. for i in range(len(df)):
20. cleanedList = [x for x in df[i] if str(x) != 'nan' or '']
21. new_variable.append(cleanedList)
22. return new_variable
23.
24. #Import routes
25. file_uploader("pickups.csv")
26. pickups = new_variable
27. file_uploader("dropoffs.csv")
28. dropoffs = new_variable
29.
30. #Import decimal coordinates of all locations
31. loc_name, loc_id, loc_add, loc_lat, loc_long = loadtxt(
32. "location_coords.csv", delimiter=',', dtype={'names': ('location', 'id', 'addre

ss', 'lat', 'long'),
33. 'formats': ('|S15', np.int, '|S15', np.float, np.float)}, skiprows=1, unpack=

True)
34. loc_id = np.ndarray.tolist(loc_id)
35.
36. #Reads in routes with van assignments
37. df = pd.read_csv('eaw_route_with_vans.csv')
38.
39. #Reads vehicle emission rates
40. vehicles = pd.read_csv('vehicles.csv')
41.
42.
43. #Convert location indices to integer type
44. for i, pick in enumerate(pickups):
45. for j in range(len(pickups[i])):
46. pickups[i][j] = int(pickups[i][j])
47. for k in range(len(dropoffs[i])):
48. dropoffs[i][k] = int(dropoffs[i][k])
49.
50. #Join pickups with dropoffs in consecutive order
51. routes = pickups
52. for i, route in enumerate(dropoffs):
53. for place in route:
54. routes[i].append(place)
55.
56. #Perform request to use the Google Maps API web service

30

57. API_key = 'AIzaSyCHtMeESjdJFqFb8TP8UI-fEKPy4zQzhys' #enter Google Maps API key
58. gmaps = googlemaps.Client(key=API_key)
59.
60. #Adjoin latitude and longitude of all locations into nested lists
61. coordinates = [[] for i in range(73)]
62. for i, coord in enumerate(loc_lat):
63. coordinates[i].append(loc_lat[i])
64. coordinates[i].append(loc_long[i])
65.
66. #Convert nested lists to a list with the coordinates in the form as a tuple
67. #location coordinates
68. coordinates_tup = []
69. for i, coords in enumerate(coordinates):
70. tup = (coordinates[i][0], coordinates[i][1])
71. coordinates_tup.append(tup)
72.
73. #route coordinates
74. route_coordinates = [[] for i in range(len(routes))]
75. for i, route in enumerate(routes):
76. for j in range(len(route)):
77. index = loc_id.index(routes[i][j])
78. route_coordinates[i].append(coordinates_tup[index])
79.
80. #Calculate route distances by finding distance from one location to the next,
81. #Once the last dropoff is reached, it adds the distance from the last location
82. #To T2T and the the first location from T2T
83. distance_list = []
84. table_to_table = (41.655520, -91.536250)
85. for i in range(len(route_coordinates)):
86. #Initial distance from T2T
87. origin = table_to_table
88. destination = route_coordinates[i][0]
89. result = gmaps.distance_matrix(origin, destination, mode='driving')["rows"][0]["ele

ments"][0]["distance"]["value"]
90. for j in range(len(route_coordinates[i])):
91. if j < (len(route_coordinates[i]) - 1):
92. origin = route_coordinates[i][j]
93. destination = route_coordinates[i][j+1]
94. result += gmaps.distance_matrix(origin, destination, mode='driving')["rows"

][0]["elements"][0]["distance"]["value"]
95. if j == len(route_coordinates[i]):
96. #Ending distance back to T2T
97. origin = route_coordinates[i][j]
98. destination = table_to_table
99. result += gmaps.distance_matrix(origin, destination, mode='driving')["rows"

][0]["elements"][0]["distance"]["value"]
100.
101. result = result / 1609.344 #Convert meters to miles
102. distance_list.append(result)
103.
104. #Add distances to the route dataframe
105. df['Distance'] = distance_list
106.
107. #Calculate route emissions
108. emission_results = []
109. for i in range(len(df['Van'])):
110. for j in range(len(vehicles['Vans'])):
111. if df['Van'][i] == vehicles['Vans'][j]:
112. distance = distance_list[i]
113. rate = vehicles['Tailpipe CO2 Emissions'][j]
114. emission = distance * rate / 1000

31

115. emission_results.append(emission)
116.
117. #Export dataframe
118. df['Emissions [CO2 kg]'] = emission_results
119. df.to_csv('calculated_inputs.csv', sep=',', index=None)

32

Appendix E: Food Category Scenarios
Produce Scenario

1
Scenario
2

Scenario
3

Scenario
4

Scenario
5

Apples 0.1 0.2 0.15 0.1 0.3

Bananas 0.1 0.2 0.15 0.3 0.1

Oranges 0.1 0.2 0.15 0.1 0.3

Potatoes 0.1 0.2 0.15 0.3 0.1

Lettuce 0.1 0.2 0.15 0.1 0.2

Broccoli 0.1 0 0.05 0.02 0

Strawberries 0.1 0 0.05 0.02 0

Avocados 0.1 0 0.05 0.02 0

Carrots 0.1 0 0.05 0.02 0

Corn 0.1 0 0.05 0.02 0

Total 1 1 1 1 1

Meat Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5

Chicken 0.25 0.5 0.3 0.2 0.7

Beef 0.25 0.2 0.3 0.5 0.3

Turkey 0.25 0.15 0.3 0.15 0

Pork 0.25 0.15 0.1 0.15 0

Total 1 1 1 1 1

Dairy Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5

Milk 0.2 0.5 0.25 0.3 0.6

Eggs 0.2 0.5 0.25 0.3 0.3

Yogurt 0.2 0 0.2 0.05 0.05

Cheese 0.2 0 0.2 0.3 0.05

Soy Milk 0.2 0 0.1 0.05 0

Total 1 1 1 1 1

Bakery Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5

Wheat
Bread

1 0 0.7 0 0.6

Sugar 0 0.2 0.1 0.2 0.12

Eggs 0 0.2 0.04 0.15 0.04

Milk 0 0.2 0.03 0.05 0

Butter 0 0.2 0.03 0.1 0.04

Wheat
Flour

0 0.2 0.1 0.5 0.2

Total 1 1 1 1 1

33

Grocery Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5

Coffee 0 0.2 0.05 0.111111 0

Cereal 0.2 0 0.1 0.111111 0.1

Canned beans 0.1 0.1 0.05 0.111111 0

Oatmeal 0.2 0.2 0.05 0.111111 0.1

Olive oil 0.05 0.05 0.1 0.111111 0.1

Rice 0.2 0.2 0.1 0.111111 0.3

Nuts 0.1 0.1 0.15 0.111111 0.1

Dry pasta 0.1 0.05 0.2 0.111111 0.3

Juice 0.05 0.1 0.2 0.111111 0

Total 1 1 1 1 1

Prepared Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5

Wheat bread 0.1 0.2 0 0.2 0.076923

Wheat flour 0.05 0 0.2 0.05 0.076923

cheese 0.05 0.05 0.15 0.05 0.076923

Olive Oil 0.05 0 0.1 0.05 0.076923

Tomatoes 0.1 0.15 0 0 0.076923

Tomato Puree 0.05 0 0.2 0.05 0.076923

Lettuce 0.15 0.3 0 0 0.076923

Onions 0.1 0.1 0.05 0.1 0.076923

Dry pasta 0.15 0 0 0.1 0.076923

Chicken 0.05 0 0 0.1 0.076923

Beef 0 0 0 0.1 0.076923

Pork 0.05 0 0 0.1 0.076923

Hams (cured) 0.1 0.2 0.3 0.1 0.076923

Total 1 1 1 1 1

Beverage Scenario

1
Scenario
2

Scenario
3

Scenario
4

Scenario
5

Orange
juice

0.2 0 0.3 0.2 0.4

Apple
juice

0.2 0.3 0.4 0.2 0

Tea 0.2 0.3 0 0.3 0.2

Soy Milk 0.2 0 0.3 0.15 0.2

Milk 0.2 0.4 0 0.15 0.2

Total 1 1 1 1 1

34

Appendix F: Water and Carbon Footprint Factors
Product Water Footprint

(m3/ton)
Pre-Retail GHG Emissions
(kg CO2e/kg)

Reference Notes

Apples 822 0.4 7,8

Bananas 790 0.9 7,8

Oranges 560 0.4 7,8 Carbon: “citrus fruits”

Potatoes 287 0.5 7,8

Lettuce 237 0.5 7,8 Carbon: “Other
vegetables”

Broccoli 285 0.5 7,8 Carbon: “brassicas”

Strawberries 347 1.5 7,8

Avocados 1981 0.5 7,8 Carbon: “Other
vegetables”

Carrots 195 0.4 7,8 Carbon: “Root
vegetables”

Corn 1222 0.5 7,8 Carbon: “Other
vegetables”

Chicken 2218 9.9 6,8 Carbon: “Poultry”

Beef 14191 99.5 6,8 Carbon: “Bovine meat
(beef herd)”

Turkey 2218 9.9 6,8 Carbon: “Poultry”

Pork 5508 12.3 6,8 Water: “Swine cuts,
fresh or chilled”

Milk 796 3.2 6,8

Eggs 1566 4.7 6,8

Yogurt 924 1.5 6,12

Cheese 3945 23.9 6,8

Soy Milk 3763 1 7,8

Wheat Bread 1608 1.6 7,8

Sugar 1782 3.2 7,8 Values are for refined
cane sugar

Wheat Flour 1849 1.6 7,8

Butter 4326 7.3 6,12

Coffee 18925 28.5 7,8 Water: “coffee,
roasted”

Cereal 1081 1.7 7,8 Water: “Maize (corn)
groats and meal”

Carbon: “Maize
(meal)”

Canned beans 5053 1.8 7,8 Water: “beans, dry”
Carbon: “other

pulses”

Oatmeal 2416 2.5 7,8 Carbon: “oats, rolled
or flaked grains”

Olive oil 14726 5.4 7,8 Water: “olive oil,
refined”

35

Rice 1673 4.5 7,8 Water: “rice, paddy”

Nuts 12294 0.4 7,8 Water: average of
almonds (shelled),
walnuts (shelled),

cashews, pistachios,
and hazelnuts

Dry pasta 1849 1.79 7,13 Carbon: “Egg pasta”

Orange Juice 1000 0.4 7,8 Carbon: “other citrus”

Apple Juice 1100 0.4 7,8 Carbon: “apples”

Tea 8856 3.806 7,14 Carbon: sum of raw
materials,

manufacture, and
distribution

Ham (cured) 5131 12.3 6,8 Water: “Hams,
shoulders and cuts

thereof, of swine bone
in, cured”

Tomato puree 713 2.1 7,8 Water: “Tomato,
puree”

Carbon: “Tomatoes”

Tomatoes 214 2.1 7,8

Onions 272 0.5 7,8 Water: “Onions (incl.
shallots), green”

Carbon: “Onions and
Leeks”

